
WAIT: Workshop on the Advances in Information Technology, Budapest, 2015

Concept of the system-level synthesis framework PipeComp

G. Suba,1 and P. Arató1

1 Department of Control Engineering and Information Technology, Budapest University of Technology and Economics, Budapest, Hungary

Abstract
In this paper, the new system-level synthesis (SLS) framework PipeComp is introduced. The purpose of PipeComp
is to compile source codes to target languages of different architectures, e.g. to hardware description or soft-
ware program code. PipeComp is a three-layer architecture framework, it contains frontends, middle-ends and
backends. The main different between PipeComp and the existing SLS solutions is that it has a dataflow graph in-
termediate language among the layers. Some specific modules are already implemented in PipeComp: imperative,
functional and graphical frontends, pipeline scheduler and decomposition middle-ends, program code, hardware
description and visual backends, which are introduced briefly in this paper.

Categories and Subject Descriptors (according to ACM CCS): B.1.4 [Microprogram Design Aids]: Languages and
compilers

1. Introduction

In this paper, the new system-level synthesis (SLS) 1 frame-
work PipeComp is introduced. The acronym PipeComp con-
sists of the pipeline and compiler words. The main purpose
of the framework is to compile one kind of a source code to
a target language, e.g. to hardware description or software
program code. PipeComp allows the user to create a com-
plex hardware-software design.

The following requirements was set preliminary for
PipeComp framework:

1. Various input languages: the framework should be able
to compile the task from different input languages, in a
special case from multiple languages, in the same com-
piling process.

2. Various output language: the framework should be able
to produce the result of the compiler in different software
or hardware languages, to realize a hardware/software co-
design.

3. Language independent optimization: a general op-
timization phase should be inserted to the compiler
pipeline without any knowledge about the supported in-
put and output languages.

4. Task decomposition: the framework should be able to

produce the parts of the input task to different target pro-
cessor architecture (e.g. CPU, DSP, GPU, FPGA).

PipeComp is an EDA (electronic design automation) kind
software that is based on the following specific methodolo-
gies:

• Electronic system-level (ESL)1 design: develop an elec-
tronic system in higher abstraction level.

• High-level synthesis (HLS) 2: one kind of ESL de-
sign methodology, which compiles automatically an al-
gorithm written in high-level language to a hardware de-
scription.

• Hardware-software co-design 3: realizes a system,
which consists concurrent hardware and software parts.

• Reconfigurable computing 4: architecture and the cor-
responding design methods in order to build high-
performance computing (HPC) systems.

The main different between PipeComp and the other
open-source frameworks 5, 6 and industrial HLS software 7, 6

that it uses a dataflow graph as intermediate language be-
tween the frontend and backend of PipeComp. The dataflow
graph contains the behaviour of the system in a simple, for-
mal way. The frontend-backend separation allows the user to
compile a task from different and multiple source languages
to different and multiple target languages.



Suba et al / PipeComp

2. PipeComp framework

PipeComp achieves the requirements listed in the previous
section by a three-layer architecture (Figure 2). The upper
layer (frontend) is responsible for producing an intermedi-
ate language (IL) from the source code. The middle layer
(middle-end) consists of IL transformation and optimiza-
tion, and the third layer (backend) transforms the IL to the
target code.

Middle-ends
(e.g.GPipelineGscheduler,

Decomposition)

Imperative
Frontends

(e.g.GC)

Functional
Frontends

(e.g.GHaskell)

Graphic
Frontends
(e.g.GGMF)

ProgramGcode
Backends
(e.g.GC)

HWGdescription
Backends

(e.g.GVHDL)

Visual
Backends

(e.g.GGraphviz)

Figure 1: Three level architecture of PipeComp

Each supported source language is processed by a sepa-
rate frontend module, thus the number of the different fron-
tend modules equals as the number of the supported input
languages.

The backends are also language dependent. The frame-
work is able to produce multiple output codes: e.g. hardware
descriptions for FPGA and ASIC, program codes for CPUs
and DSPs. For each destination language a different back-
end module is applied, which generates the output for the
destination architecture from the IL.

The typical corresponding functions of the three layers:

• Frontend: lexer and parser for textual frontends, syntac-
tic and semantic analyzers, language dependant optimiza-
tion and generation of the IL

• Middle-end: language independent optimization, input
synchronization of operations, pipeline scheduling, de-
composition

• Backend: optimization depends on the target device or
target language, synchronization, scheduling, allocation,
target code generation

The IL between the frontend and middle-end, and be-
tween the middle-end and backend is the novel dataflow
graph representation HIG (HLS intermediate graph), which
will be detailed in the next section.

2.1. HIG - HLS intermediate graph

HIG, as the intermediate language of PipeComp can be con-
sidered as a multi-rate extension of the dataflow graph EOG

(elementary operation graph) 8. The main advantage of HIG
contrary to EOG is its nested-loop representation capability.

A vertex of the HIG is an operation, an edge between two
vertices is a dataflow channel (shortly dataflow) between op-
erations.

All operations have the following properties:

• Operation class: the base type of the operation. In HIG,
the following classes are defined: elementary operation,
constant node, input and output ports, complex and loop
operations.

• Execution time: defines the duration time of an operation
in the time unit of the system (e.g. clock period if the tar-
get is hardware). If the execution time is 0, the operation
can be represented by a combinatorial logic, otherwise by
a sequential logic.

• Number of the inputs and outputs: the number of the
input operands and output results defined by the given
operation.

• Side effect free (SEF) property: an operation is SEF, if
the output depends on nothing but the inputs. Contrary,
if the output of an operation depends on an inner state,
the operation has side effect, thus the SEF property is not
present.

• Requirement of input synchronization (RSI) prop-
erty: if an operation is RSI, it starts the execution, only
if all input dataflow channels of the operation has valid
data. Otherwise, only one input data is enough to start
the execution.

The properties of the dataflow channels:

• Data type: the type of the value transported by the
dataflow. It can be considered as the generic variants of
the C-based types. An essential parameter of the data
type is the number of bits it can be represented in hard-
ware/software.

• Source node: each dataflow has exact one source node
(the edge starts from the source node of the dataflow).

• Destination node: each dataflow has exact one destina-
tion node (the edge ends at the destination node of the
dataflow).

In Figure 2.1, an example is shown to demonstrate the
usage of HIG. The six possible operation classes (each has
its own color in the figure) will be detailed in the following:

• Elementary operation (dark green rectangles): an oper-
ation considered as atomic. It has accurately one output
and one or more inputs. The behaviour of the elementary
operation is either represented in the target language (e.g.
simple arithmetic operations addition, substraction, mul-
tiply, compare, etc.), or it is defined by a complex module,
function or subprogram (depends on the language termi-



Suba et al / PipeComp

Complex1

Input

InPort1

Output1 Output2

7

InPort2

Add3

OutPort1

Mul

OutPort2

5

Loop1 (TC=4)

Input

InPort1

Output1 Output2

Add3

Reg

OutPort1

Mul

OutPort2

50

Figure 2: Two example HIG graphs

nology) in the target language. The duration time has to
be defined before compiling process.

• Constant node (white rectangles): produce a constant
value in run-time.

• Input port (light green rectangles): an input node of the
HIG. A HIG is only able to get information through an
input port from the outside context. In other words, an al-
gorithm written in HIG gets its parameters from its input
ports.

• Output port (light green rectangles): an output node of
the HIG. A HIG can produce information only through
an output port to its context.

• Complex operation (white, rounded rectangles): an op-
eration, which is represented by an inner graph. The in-
ner graph is also a HIG (which also contains operations
and dataflow channels). An inner HIG gets its parame-
ters through the input ports, and the results are produced
through the output ports.

• Loop operation (yellow rectangles): a complex opera-
tion, which represents an algorithmic loop. The differ-
ence between the loop and complex operation is that the
operations in a loop are executed more than ones (the
number of the iterations is the trip count).

3. PipeComp modules

In this section, the specific modules are introduced, which
is already implemented in PipeComp: imperative, functional
and graphical frontends, pipeline scheduler and decomposi-
tion middle-ends, furthermore program code, hardware de-
scription and visual backends.

3.1. Imperative frontends

Considering an arbitrary computer language, the compiler
has the following steps, no matter if it is an imperative, func-

tional or any other paradigm language. The lexer processes
the original source code, and produce a token list (e.g. in
C: keywords, operations, identifiers, constants and literals).
The next process is the parser, which gets the token list, and
produces the abstract syntax tree (AST).

The AST of an imperative language (excluded the object
oriented structures) consists of the typical structures: assign-
ments, operations, branches, loops, function definitions, type
definitions, etc. The AST is transformed to a simpler struc-
ture: limited number of branch and loop structures, single
assignments for represent the operations.

An advanced compiler has many optimization possibili-
ties. Most of them are dataflow optimization methods, where
it is necessary to convert the assignments to SSA (static sin-
gle assignment) form.

One solution for compiling C to HIG is the GIMPLE
frontend 9 based on GCC † (GNU Compiler Collection).
GIMPLE is in SSA form, but it has also huge disadvantages:
it does not contain structural aspects (type and variable def-
initions), and it is not high-level enough. The loops and the
branches are substituted by jumps, therefore a control flow
processing method is needed to create the loop-nest hierar-
chy (LNH). Furthermore, it contains CPU specific decisions,
e.g. memory offset parameters in case of arrays.

A new approach is applying the ANTLR ‡ to produce the
AST, which eliminates the listed disadvantages of GIMPLE
frontend, but the parser has to be developed from scratch.

The GIMPLE and ANTLR based approach is summarized
in Figure 3.1 on the left and the right respectively.

Lexer-Parser

Produce SSA

Produce LNH

Generate HIG

AST to GIMPLE

Lexer-Parser

AST to SAST

Preprocessor Preprocessor

Produce SSA

GCC preprocessor

ANTLR parser

Generate HIG

GCC compiler

GCC preprocessor

Figure 3: GIMPLE and ANTLR based C frontends

† https://gcc.gnu.org/
‡ http://www.antlr.org/



Suba et al / PipeComp

3.2. Functional frontends

The first part (lexer and parser) of the functional frontends is
similar to the imperative case detailed previously.

The Haskell frontend 10 of PipeComp is based on GHC §

(Glasgow Haskell Compiler). The GHC parser produces an
AST based on lambda calculus with the typical structures:
lambda abstraction and application, variable binding and us-
age, pattern matching, type definition.

The AST of Haskell is evidently already SSA, as the func-
tional languages set a specific variable only once.

3.3. Graphical frontends

Some aspects of tasks can be modeled graphically much sim-
pler than in textual way, for example the connections of mod-
ules or the pipeline architecture algorithms. In GMF fron-
tend 11 of PipeComp, the Eclipse based GMF ¶ (Graphi-
cal Modeling Framework) is applied to transform the inner
model to HIG.

It is important to note that GMF is able to be used also for
workflow editor, which controls the whole compiling pro-
cess.

3.4. Optimization middle-ends

Pipeline scheduling 8 is an essential methodology to increase
the throughput of a system, especially digital signal process-
ing ones. In case of hierarchical dataflow graphs pipeline
scheduling needs special considering 12, which is imple-
mented in the Pipeline scheduler middle-end of PipeComp.

The purpose of the other significant part Decomposition
middle-end 13 is to cut the task definition HIG into several
parts automatically. After this process the specific parts can
be synthesized to different processors.

3.5. Visual backends

The visual backends are used for documenting the inner
dataflow model. In our case a Graphviz backend 11 is used.
Graphviz is an open source graph visualization tool ‖.
Among others, in this paper this output is used to visualize
the HIG representation.

3.6. Program code backends

The purpose of program code backends is to produce a com-
pilable and runnable program code for CPUs, DSPs or any
other classic processor architectures. The Java-based Xtend
∗∗ is applied to generate the target code.

§ https://www.haskell.org/ghc/
¶ http://eclipse.org/modeling/gmp/
‖ http://www.graphviz.org/content/dot-language
∗∗ https://eclipse.org/xtend/

3.7. Hardware description backends

In this case the target domain is hardware structure descrip-
tions rather than software program codes. Since the dataflow
aspect is analogous to the hardware circuits, generating a
HDL code from the HIG is obvious. The dataflow vertices
are transformed to module instantiations or atomic operation
keywords, and the edges are transformed to bit vectors.

The VHDL backend 10 is the only existing HDL backend
of PipeComp now, but the development of a Verilog gen-
erator would not be a big challenge after the VHDL one is
completed.

4. Summary

In this paper the SLS framework PipeComp was introduced
briefly. Four requirements was set preliminary, which are
achieved by a frontend - middle-end - backend architecture.
The main different between PipeComp and the other similar
frameworks that it uses a dataflow graph as intermediate lan-
guage between the frontend and backend. The intermediate
language in this case is the hierarchical intermediate graph
with dataflow aspect.

PipeComp has specific modules already implemented, C,
Haskell and GMF frontends, pipeline scheduler and decom-
position middle-ends, furthermore program code, hardware
description and visual backends.

Acknowledgements

The research work presented in this paper has been sup-
ported by the Hungarian Scientific Research Fund OTKA
72611, by the “Research University Project” TAMOP
IKT T5 P3 and the research project TAMOP- 4.2.2.C-
11/1/KONV-2012-0004.

References

1. A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov,
D. D. Gajski, and J. Teich, “Electronic System-
Level Synthesis Methodologies,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1517–1530, Oct. 2009.

2. G. Martin, G. Smith, D. Tho, M. Barbacci, and
A. Parker, “High-Level Synthesis: Past, Present, and
Future,” IEEE Design & Test of Computers, vol. 26,
no. 4, pp. 18–25, Jul. 2009.

3. J. Teich, “Hardware/software codesign: The past, the
present, and predicting the future,” in Proceedings of
the IEEE, vol. 100, no. Special Centennial Issue, May
2012, pp. 1411–1430.

4. T. Todman, G. Constantinides, S. Wilton, O. Mencer,
W. Luk, and P. Cheung, “Reconfigurable computing:
architectures and design methods,” p. 193, 2005.



Suba et al / PipeComp

5. S. Ravi and M. Joseph, “High-Level Test Synthesis,”
ACM Transactions on Design Automation of Electronic
Systems, vol. 19, no. 4, pp. 1–27, Aug. 2014.

6. J. Cong, S. Neuendorffer, J. Noguera, and K. Vissers,
“High-Level Synthesis for FPGAs: From Prototyping
to Deployment,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 30, no. 4, pp. 473–491, Apr. 2011.

7. A. Cornu, S. Derrien, and D. Lavenier, “HLS tools for
FPGA: Faster development with better performance,”
in Lecture Notes in Computer Science, vol. 6578
LNCS, 2011, pp. 67–78.

8. P. Arató, T. Visegrády, and I. Jankovits, High Level
Synthesis of Pipelined Datapaths. New York, USA:
John Wiley & Sons, Ltd, 2001.

9. P. Arató and G. Suba, “A data flow graph generation
method starting from C description by handling loop
nest hierarchy,” in IEEE 9th IEEE International
Symposium on Applied Computational Intelligence and
Informatics (SACI). IEEE, May 2014, pp. 269–274.

10. G. Suba and P. Arató, “A new method for transform-
ing algorithm into VHDL by starting from a Haskell
functional language description,” in Middle-European
Conference on Applied Theoretical Computer Science,
2013.

11. G. Suba, P. Dóbé, B. Simon, and R. P. Kápolnai, “A
magas szintû programnyelvi feladatleírás alapján adat-
folyam jellegû gráf szisztematikus képzése,” Budapest
University of Technology and Economics, Budapest,
Tech. Rep., 2015.

12. G. Suba, “Hierarchical Pipelining of Nested Loops
in High-Level Synthesis,” Periodica Polytechnica
Electrical Engineering and Computer Science, vol. 58,
no. 3, pp. 81–91, 2014.

13. P. Arató, D. A. Drexler, and G. Kocza, “Loop-free
Decomposition in High-Level Synthesis,” SCIENTIFIC
BULLETIN of The POLITEHNICA University of
Timižoara, Romania, vol. 59(73), no. 2, pp. 99–104,
2014.


